Relativistic parametrization of the self-consistent-charge density-functional tight-binding method. 1. Atomic wave functions and energies.
نویسندگان
چکیده
A detailed treatment of a confined relativistic atom, needed as an initial step for the parametrization of the self-consistent-charge density-functional tight-binding method, is presented and discussed. The required one-component quantities, i.e., orbital energies, orbital wave functions, and Hubbard parameters, are obtained by weighted averaging of the corresponding numbers determined for the atomic spinors. The wave function and density confinement is achieved by introducing the Woods-Saxon potential in the atomic four-component Dirac-Kohn-Sham problem. The effect of the additional confining potential on energy eigenvalues and the shape of atomic wave functions and densities is discussed and numerical examples are presented for the valence spinors of carbon, germanium, and lead.
منابع مشابه
Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کاملA theoretical study on halogen-π interactions: X-C2-Y…C8H8 complexes
M06-2X functional was employed to study halogen-π interactions in X-C2-Y…C8H8 complexes (X, Y=H, F, Cl, and Br). In fact, interactions of mono- or di-halogenated acetylenes and planar cyclooctatetraene as an anti-aromatic π system were considered. Relationship between binding energies of the complexes and charge transfer effects was investigated. Also, electronic charge density values were calc...
متن کاملExtension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction.
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions...
متن کاملSCC-DFTB Parametrization for Boron and Boranes.
We present the results of our recent parametrization of the boron-boron and boron-hydrogen interactions for the self-consistent charge density-functional-based tight-binding (SCC-DFTB) method. To evaluate the performance, we compare SCC-DFTB to full density functional theory (DFT) and wave-function-based semiempirical methods (AM1 and MNDO). Since the advantages of SCC-DFTB emerge especially fo...
متن کاملDensity Functional Studies on Crystal Structure and electronic properties of Potassium Alanate as a candidate for Hydrogen storage
Potassium Alanate is one of the goal candidates for hydrogen storage during past decades. In this report, initially the Density Functional Theory was applied to simulate the electronic and structural characteristic of the experimentally known KAlH4 complex hydride. The relaxation of unit cell parameters and atomic positions was performed until the total residual force reduced less than 0.001ev ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 111 26 شماره
صفحات -
تاریخ انتشار 2007